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EVOLUTION OF SEDIMENTARY BASINS—UINTA AND PICEANCE BASINS

Petrography, Mineralogy, and

Reservoir Characteristics of the

Upper Cretaceous Mesaverde Group in the
East-Central Piceance Basin, Colorado

By Janet K. Pitman, Charles W. Spencer, and Richard M. Pollastro

Abstract

Large amounts of natural gas occur in low-permeability
(tight) reservoir rocks of Cretaceous age in the Piceance
basin of northwest Colorado. Three closely spaced wells
drilled through the Upper Cretaceous Mesaverde Group as
part of the U.S. Department of Energy’s Multiwell Experiment
(MWX) were extensively cored and logged in order to identify
the factors controlling the occurrence and distribution of gas
in low-permeability rocks and to improve recovery
technology. X-ray diffraction and petrographic studies reveal
that potential reservoir rocks in the Mesaverde are composed
of varying amounts of framework grains including quartz,
feldspar, and volcanic and sedimentary lithic fragments;
authigenic mineral cements including quartz and carbonate;
and clay minerals including illite, mixed-layer illite/smectite,
chlorite and kaoclinite in the upper part of the group, and
dominantly illite and illite/smectite in the lower part of the
group.

Porosity and permeability of reservoir sandstones inthe
Mesaverde Group typically are low. Porosity is best
developed in rocks that have undergone dissolution of
chemically unstable lithic grains and carbonate cement and
is significantly reduced in sandstones containing abundant
deformed lithic grains, detrital matrix, and authigenic pore-fill
carbonate cement. Permeability to gas in the Mesaverde is
low (< 0.1 millidarcy) because the sandstones have complex
pore geometries resulting from extensive authigenic clay
mineral formation in secondary pores. At in situ conditions,
water adsorbed on clay surfaces creates high irreducible
saturations. These high saturations result in low gas-
saturated pore volumes that significantly retard fluid flow
through poorly connected pores. Production-test data

Manuscript approved for publication December 2, 1988.

indicate that production of natural gas in the MWX wells is
controlled by both permeability and the distribution of natural
fractures; drill cores taken through the Mesaverde in these
wells display extensive open and partly mineralized natural
fractures. Fracture-analysis studies and detailed mineralogic
investigations are necessary to successfully explore and
produce gas from these low-permeability reservoir rocks in
the Piceance basin and other basins of the Rocky Mountain
region.

INTRODUCTION

The Piceance basin in northwestern Colorado
contains major resources of natural gas in low-
permeability (tight) reservoir rocks (fig. 1). Such rocks
typically have in situ permeabilities to gas of less than 0.1
millidarcy (mD). The National Petroleum Council
(NPC) appraised 12 basins and areas in the United States
and estimated that tight-gas reservoirs in these basins
contain 444 trillion cubic feet (TCF) of gas in place, of
which about 231 TCF is recoverable (NPC, 1980, p. 31).
If these data are extrapolated to 101 additional basins in
the United States, then 608 TCF of gas may be
recoverable from tight sandstone reservoirs in 113 U.S.
basins. The NPC study indicates that the Piceance basin
contains no more than 32 TCF of recoverable gas in
low-permeability rocks. Most gas in the Piceance basin is
in fluvial and marine sandstone sequences in the Upper
Cretaceous Mesaverde Group and lower Tertiary
Wasatch Formation. Major gas resources also occur in
tight rocks of similar age and origin in other basins in the
Rocky Mountain region.

In 1981, the U.S. Department of Energy (DOE)
initiated a field-oriented, enhanced-gas-recovery re-
search experiment in the southern part of the Piceance

Mesaverde Group, East-Central Piceance Basin, Colorado G1
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Figure 1. MWX site and selected Tertiary and Upper Cretaceous gas fields (pattern), Piceance basin, western
Colorado. Modified from Dunn (1974).
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basin (fig. 2). This project, referred to as the Multiwell
Experiment (MWX), was undertaken as a major part of
DOE’s Fossil Energy Western Gas Sands Subprogram in
order to provide new and improved technology to identify
natural gas in tight reservoirs and to develop
economically viable and reliable recovery methods
(Northrop and others, 1984; Spencer, 1984). Three

closely spaced wells, designated CER Nos. 1, 2, and 3
MWX (referred to as MWX~1, -2, and -3, respectively,
in this study), were drilled and logged at the MWX site to
evaluate well-interference production testing in tight
sandstones common to all three wells. Figure 3 shows the
locations of the three wells relative to each other at the
surface and at various subsurface depths. The wells, in

Mesaverde Group, East-Central Piceance Basin, Colorado G3
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the northwest quarter of sec. 34, T. 6 S., R. 94 W.,
Garfield County (fig. 1), were spudded in the upper part
of the lower Tertiary Wasatch Formation and reached
total depth at or near the base of the Upper Cretaceous
Mesaverde Group.

Approximately 4,000 ft (1,220 m) of core,
extending from depths of 4,170 to 8,141 ft (1,271-2,481.4
m), was cut in various intervals in the Mesaverde with
nearly complete recovery (fig. 4). The primary focus of
our study was the fluvial part of the Mesaverde Group
because, in this unit, low-permeability gas-bearing
reservoir sandstones are complexly interbedded with
discontinuous source rocks. In other Rocky Mountain
basins, similar rock sequences commonly are more than
5,000 ft (1,524 m) thick. The cores taken in each well
were used to characterize lateral and vertical variations
in sandstone geometry; determine factors governing
reservoir  quality; document the character and
distribution of natural fractures in blanket (marine and
marginal-marine) and lenticular (nonmarine) reservoir
sandstones; and apply the knowledge gained in our
analysis to gas-recovery technology. Historically,

hydraulic fracturing has been relatively unsuccessful in
stimulating gas production in low-permeability lenticular
Cretaceous rocks, although it has been somewhat more
successful in blanket reservoir sandstones of similar age
(Spencer, 1985).

The goal of our study was to summarize the
mineralogy and diagenesis of cored sandstones in various
depositional zones in the MWX wells in order to
determine the factors controlling reservoir quality and
distribution, with special emphasis on individual
sandstones that have been tested for gas potential. We
also evaluated reservoir properties by utilizing
information derived from geophysical logs. Kukal and
others (1983) have described some log-analysis problems
and possible solutions to these problems (Kukal, 1984).
We investigated the clay mineralogy of discrete
sandstone-shale pairs in an attempt to explain the effect
of shale clay-mineral assemblages on the composition
and abundance of clays in nearby reservoir sandstones.
Collectively, our efforts should provide a better
understanding of the exploration and production of
hydrocarbons from tight sandstone reservoirs in the
east-central Piceance basin and in other areas where
rocks with similar characteristics have undergone
comparable depositional and diagenetic histories.

Acknowledgments.—We acknowledge the financial
and technical support of the U.S. Department of Energy
(DOE). The work on which this report is based was
funded by the DOE Morgantown Energy Technology
Center (METC). We gratefully acknowledge the advice
and encouragement of Karl-Heinz Frohne and Charles
A. Komar (METC), and James Chism and J. Keith
Westhusing (DOE Bartlesville Project Office). We also
acknowledge the technical help of U.S. Geological
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processing to retrieve mineralogic point-count data
provided by Bendix Field Laboratory. Most of the thin
sections and the mineralogic data were provided by
Bendix Field Laboratory. We also thank the personnel of
Sandia National Laboratories and CER Corporation for
providing support data and samples used in this study.

ANALYTICAL METHODS

Representative sandstone samples from the MWX
wells were split into three portions for thin-section, X-ray
diffraction (XRD), and scanning electron microscropic
(SEM) analyses. For comparative purposes, a selected
group of sandstone-shale pairs was analyzed by using
XRD for whole-rock chemical composition and clay
mineralogy. Thin sections prepared by vacuum
impregnation of low-viscosity blue epoxy were stained for
feldspar and calcite using standard techniques. The
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petrographic descriptions and interpretations presented
in this study are based on point-count data provided by
Bendix Field Laboratory (written commun., 1984)
Qualitative and semiquantitative XRD analysis was
performed on selected whole-rock samples and their <2
pm fractions. (Details of the XRD methods are reported
by Pollastro, 1984.) Small, freshly fractured chips of
sandstone were studied by using the scannning electron
microscope to document the occurrence and distribution

of authigenic mineral cements and clay constituents and
to characterize the morphology of pores.

PETROLOGY AND MINERALOGY

The Mesaverde Group in the southern Piceance
basin was subdivided by Lorenz (1983) into five zones,
paralic, fluvial, coastal, paludal, and shoreline-marine,
based on the sedimentologic and depositional regime in
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Table 1. Mineralogy of sandstones in MWX wells as caiculated
by using X-ray diffraction

[In weight percent. A, average; R, range. Thirty-eight core samples

analyzed from each depositional zone)]
Carbonate Clays
Quartz Feldspar minerals (phyllosilicates)
Environment A R A R A R A R
Mixed marine-

nonmarine 62 53-66 4 25 15 928 19 1720

Fluvial 51 3365 10 4-21 8 140 26 19-36
Coastal 53 50-65 7 529 9 419 27 18-14
Paludal 46 29-55 6 48 20 943 29 2438
Shoreline-

marine 65 64-66 7 58 5 37 24 19-28

which they formed. Lorenz’s paralic zone is hereafter
referred to as the mixed marine-nonmarine zone. Figure
5 shows these zones and the continuity of individual
sandstone beds between the three wells. Sandstones in
the Mesaverde are composed dominantly of framework
quartz, feldspar and lithic fragments, authigenic
carbonate minerals including calcite, dolomite, and
ankerite, and clay minerals including illite, mixed-layer
illite/smectite (I/S), kaolinite, and chlorite. The relative
distribution of these minerals within and between
individual zones is shown on plate 1. The mineralogy of
sandstones and shales in each of the zones was calculated
by using XRD analysis (table 1).

Mineralogic data (table 1) show that, on average,
rocks of the mixed marine-nonmarine and shoreline-
marine zones contain the most quartz; however, the
variation in amount of quartz is relatively narrow,
particularly in the marine zone. The mixed marine-
nonmarine and paludal zones contain more carbonate
minerals than do the other zones. Clay and feldspar
contents are similar in all zones except the mixed marine-
nonmarine, which contains smaller amounts of these
minerals. Volcanic grains are absent in the paludal and
shoreline-marine zones.

Mixed Marine-Nonmarine Zone

Rocks in the mixed marine-nonmarine zone in the
MWX well extend from the top of the Mesaverde Group
at a depth of 3,901 ft to about 4,390 ft (1,1891-1,338 m)
and unconformably underlie the Tertiary Wasatch
Formation. The mixed marine-nonmarine zone has been
interpreted by Lorenz (1982) to represent sedimentation
associated with a marine transgression correlative with
the Upper Cretaceous Lewis Shale. Rocks comprising
this zone were deposited in a mixed marine-nonmarine

environment and are composed dominantly of laterally
continuous, hummocky, cross-stratified sandstones that
contain marine fossils (Lorenz, 1982). The sandstones
are composed of angular to subrounded quartz grains,
sodium and potassium feldspars, and sedimentary lithic
fragments. Based on the proportions of these
constituents, the sandstones are classified as litharenites
and feldspathic litharenites (fig. 6). Textural relations
between detrital grains, authigenic minerals, and pores
are shown in figure 7. Semiquantitative XRD analysis
indicates that sandstones from the mixed marine-
nonmarine zone contain 17-20 weight percent total clay
(table 1). Much of this clay, which includes all micaceous
minerals, can be attributed to altered sedimentary rock
fragments of dominantly siltstone, mudstone, and shale.

Framework Grains

Quartz, a dominant framework constituent,
constitutes 27-63 percent of the bulk rock. Although
most quartz grains are subangular to subrounded and
fine in size, a significant number are medium grained.
Individual grains typically are monocrystalline, have
straight to undulatory extinction, and are free of
inclusions. Overgrowths are rare, probably because of
the large amount of pseudomatrix.

Sodium and potassium feldspars constitute from a
trace to 9 percent and from a trace to 5 percent,
respectively. These petrographic data are similar to the
total feldspar calculated by using XRD (2-5 weight
percent; table 1). Plagioclase grains are both twinned and
untwinned and either fresh or altered in appearance.
Potassium feldspar grains typically show signs of
chemical alteration, usually replacement by carbonate
along cleavage traces. Later dissolution of this carbonate
during diagenesis results in preservation of only relict
feldspar. Internal voids in feldspar grains that do not
contain carbonate remnants may be the result of direct
dissolution rather than carbonate removal.

Sedimentary rock fragments are abundant and
constitute 5-26 percent of the rock. Mudstone, siltstone,
and clay-rich shale fragments typically have been
deformed between framework grains to form a
pseudomatrix. These grains may be partly dissolved. A
few rounded grains of detrital polycrystalline dolomite
also were observed.

Subrounded grains of chert are abundant and
make up 1-12 percent of the whole rock. Most chert is
composed either of cryptocrystalline quartz crystals or of
individual grains of quartz of various sizes. Grains of
altered chert are various shades of brown, and in plane-
transmitted light may contain inclusions of mica or black
flecks of organic material. A few chert grains are black
and contain veins of quartz. Some felsite grains
composed of tiny quartz or feldspar crystals were likely
misidentified as chert.

Mesaverde Group, East-Central Piceance Basin, Colorado G7
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Authigenic Minerals

Authigenic mineral phases in the mixed marine-
nonmarine zone comprise quartz, calcite, dolomite, chlo-
rite, and kaolinite. Quartz overgrowths are present in
significant amounts in rocks that initially had good
primary porosity, few labile grains, and minor detrital
clay matrix. The relative abundance of authigenic quartz
commonly is difficult to determine because of
indistinguishable grain boundaries. In some sandstones,
secondary quartz is widespread and forms a mosaic
texture. Intergranular relationships between quartz over-
growths and other mineral cements, such as iron-rich
chlorite and calcite, suggest the overgrowths formed
during ecarly diagenesis before significant grain
compaction.

Authigenic calcite constitutes 1-42 percent of the
rock in the mixed marine-nonmarine zone and is locally
widespread between 4,197 and 4,271 ft (1,279-1,302 m);

only trace amounts of authigenic dolomite are present. In
most sandstones, calcite occurs as a relict pore-fill
cement and as a replacement of framework grains. In one
sandstone bed, however, poikilotopic calcite is
widespread and encloses framework grains that show
little evidence of chemical alteration. Cementation by
calcite apparently occurred during early diagenesis
before extensive grain compaction and protected
framework grains from extensive alteration. Many
sandstones exhibit abundant secondary porosity. The
occurrence and distribution of relict calcite in dissolution
voids suggest that preexisting calcite may have been a
dominant cement in sandstones that now have
widespread secondary porosity.

Authigenic dolomite is present in trace amounts,
and its occurrence is similar to calcite in that it is an
anhedral pore-fill cement and replacement mineral.
Some calcite locally has been dolomitized.

G8  Evolution of Sedimentary Basins—Uinta and Piceance Basins
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